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INTRODUCTION

Identification of optimal dosing regimens is an important
field of study in cancer chemotherapy. In the empirical pharma-
codynamic relationship between the drug concentration (C) and
exposure time (T) and the drug exposure constant (h), C" X
T = h, his a constant related to the drug effect. The pharmacody-
namic exponent n indicates the relative importance of C and T
in determining the pharmacologic effect (1-4). We have shown
that analysis of the C vs T plot for a given effect (e.g. 50% of
inhibition of cell proliferation) provides the n value (3,4). When
the n value equals 1.0, the relationship collapses to C X T =
h, and C and T are inversely related and contribute equally to
the effect. In this case, treatment schedules that produce the
same C X T, regardiess of the shape of the concentration-
time profile (e.g. short exposure to high concentrations or long
exposure to low concentrations), will result in identical effects.
When the n value is greater than 1.0, the C" term contributes
more than T to the effect. In this case, a short infusion that
delivers high concentrations will produce a greater effect than
a long infusion that delivers the same C X T but lower concen-
trations. The reverse is true when n is less than 1.0.

When the n value deviates from 1.0, even at a relatively
minor extent, different treatment schedules can result in large
differences in the C" X T product. For example, two hypotheti-
cal concentration-time profiles, i.e. 10 wg/ml for 1 hror 1 pg/
ml for 10 hr, would yield identical C" X T of 10 pg"-hr/mI"
at an n value of 1.0 but significantly different C" X T values
of 17.0 and 10.0 pg"-hr/ml", respectively, at an n value of 1.23.
Hence, the precision and accuracy of the n value obtained from
pharmacodynamic analysis as well as the statistical significance
of the n value (i.e. whether the estimated n is significantly
different from 1.0) are important for deciding on the treatment
schedules that produce the highest effect.
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We have shown that the accuracy, precision, and statistical
significance of the n value depend on the experimental design,
method of data analysis, and tumor sensitivity to the drug (4).
However, the relationship between the variability in the n value
and the variability in the effect data is not known. As an exam-
ple, if the effect data show a standard deviation (SD) of 20%,
is the n value of 1.20 significantly different from 1.0? In a
typical pharmacodynamic study, the drug effects at multiple
treatment times are determined using several replicates at each
time point. These data provide a measurement of the variability
in the effect data (e.g. SD of multiple observations), but not
the variability in the n value because n is a calculated parameter
derived from analysis of the concentration-effect relationship.

The goal of the present study was to determine the effects
of two factors, i.e. the numerical values of the n estimates and
the magnitude of variability in the effect data, on the accuracy,
precision, and statistical significance of the n estimates. This
study used the data generated by relatively few experiments
together with Monte Carlo simulations to generate additional
data sets with comparable variability as in the experimentally
obtained data. The Monte Carlo simulations, based on the vari-
ability in the effect data, provided the variability in the n value
and thereby the evaluation of the statistical significance of the
experimentally determined n value. The use of the Monte Carlo
simulations circumvents the need of defining the mathematical
relationship between the variabilities in the effect data and the
n values.

MATERIALS AND METHODS

Experimental Plan

The step-wise research plan was as follows: (a) select the
pharmacodynamic model and the model parameters, including
the n values (referred to as specified n values), (b) use Monte
Carlo simulations to generate 100 sets of drug concentration-
treatment time-effect data for each of the different combinations
of model parameters, (c) analyze the simulated data to obtain
n estimates (referred to as estimated n values), and (d) compare
the specified n values with the average of the 100 estimated n
values obtained for each condition to determine the accuracy,
precision and statistical significance of the estimated n values.

Pharmacodynamic Model

Drug effect was determined by the sulforhodamine B
(SRB) assay, which measures the celiular protein level and
is a surrogate measurement of the cell number. Analysis of
pharmacodynamic data was performed using the 3-dimensional
surface response as described by Equation 1(4).
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E, is the baseline value in the absence of drug and is the SRB
reading for the untreated controls. E is the SRB reading for
drug-treated samples. Eq and E are expressed as % of the control
value. Because E, is a fitted parameter, its value can exceed
100%. n is the pharmacodynamic exponent in the empirical

E = E()(l
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relationship of C" X T = h. h is the drug exposure constant.
ICs; is the drug concentration that produces 50% effect. h is
proportional to (ICsg)" when T remains constant, and a high h
value indicates high ICs, and therefore a lower tumor sensitivity
(4). m describes the shape of the surface response and a lower
value of m is associated with a more shallow concentration-
effect relationship. Equation 1 was derived by combining the
empirical equation C" X T = h and the sigmoid E,,, model
that describes a concentration response curve (4). The assump-
tion for the model described in Equation 1 is that a given drug
exposure will produce a pharmacologic effect of up to 100%
(as opposed to an incomplete effect of <100%). We have shown
that analysis of data by this surface response relationship pro-
vides more accurate and precise estimates of n, compared to a
two-step method in which the ICsy’s are first calculated for
each exposure time and then fitted with the C" X T = h equation
to solve for the n value (4).

Pharmacodynamic Model Parameters

For the specified n values, we arbitrarily selected 21 n
values distributed between 0.6 to 1.4. The other parameters
described in Equation 1, i.e. Ey, h, and m were identical to
those obtained from the experimental data on the pharmacody-
namics of mitomycin C (MMC) in human pharynx FaDu cancer
cells (i.e. Eg = 100%, h = 6.55, and m = 1.02; see Figure 1).
The model parameters were obtained from 4 experiments of
5 concentration-response curves determined for 5 treatment
durations. Each concentration-response curve consisted of 9
data points, with 6 replicates per point. A total of 63 permuta-
tions containing different combinations of n values (21 values)
and effect data variability (3 levels), were studied.

Monte Carlo Simulations

The previously described Monte Carlo method (4) was
used to generate the concentration-response data using Equation
1. A two-step procedure was used to generate effect data which
contain variability (E,,,) that is representative of the variability
observed experimentally. First, error-free effect data with no
variability (E.,.) were generated using different drug concentra-
tions (ranging from 0.001 to 100 pg/ml) and different treatment

Table 1. Comparison of Variability in n Values Obtained from Experi-
mental and Simulated Data

. Simulated data
Experimental

Values of n data Middle level High level
No. of experiment 4 100 100
Mean .11 1.11 1.11
Median 1.13 1.11 1.11
SD 0.06 0.03 0.06
Ccv 5.07 2.42 5.04
Range 1.04-1.16 1.05-1.19 0.99-1.29

Note: FaDu cells were treated with MMC in 4 experiments, using 6
replicates per data point. The CV in the effect data was determined
from the 6 replicates. For the middle and high levels of variability, the
middle and the upper lines in Figure 1A were used to simulate data sets.
Differences between the mean n values obtained from experimental and
simulated results were not significant (two-tailed Student’s t-test).
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times (ranging from 1.5 to 48 hr). The simulations were per-
formed using different specified n values. Second, a variability
term, SD (standard deviation), is added to E;. to generate the
variability-containing E,, data using Equation 2.

Eyy = Ecye + SD * Rannor(x) (2)

Rannor(x) values are normally distributed random num-
bers with a mean of 0 and a standard deviation of 1. The SD
was derived from the experimental data (see below).

The experimental variability in the effect measurement
was dependent on the magnitude of the effect. A comparison
of the relationships of the effect with several measures of vari-
ability, i.e. SD, CV, and log or reciprocal of the CV, showed
the linear (inverse) relationship between effect and CV yielded
the highest coefficient of determination (r> = 0.56) and the
lowest Akaike Information Criterion value. The CV declined
with increasing drug effect. When the effect was minimal (i.e.,
<5%), some CV values were exceedingly large. CV values
larger than twice the intercept of the CV vs E plot were consid-
ered outliers and were not included in the analysis. We defined
three levels of variability, i.e., low, middle, and high, where
the middle level represents the linear regressed line for the plot
of CV vs E, and the low and high levels of variability represent
the lower and upper limits of the 95% prediction interval. The
ranges of CV for the low, middle and high levels of variability
were 0 to 10.5%, 0 to 21.6%, and 10.4 to 32.7%, respectively
(Fig. 1A). The corresponding intercepts for the three lines were
10.6%, 21.7%, and 32.8%, respectively. The three lines showed
almost identical slopes of about —0.18.

The low, middle, and high levels of the intercepts and
slopes of the CV vs E plots were used to calculate three levels
of SD as a function of the E value, as follows. E, ., is the
mean E value.

SD

mean

CV =

X 100% = (slope * E + intercept) 3)

_ (slope * E + intercept) * E, .,

sb 100%

C))

Equations 2 and 4 were used to simulate E,,. For each
combination of different pharmacodynamic model parameters,
100 concentration-response data sets with six replicates were
generated. The simulated data were then analyzed using Equa-
tion | to obtain the estimated n values.

Determination of Accuracy, Precision and Statistical
Significance of Estimated n Values

The difference between the specified n value and the aver-
age estimated n value indicated the accuracy (i.e., a smaller
difference indicated a greater accuracy). The CV of the esti-
mated n values indicated the precision (i.e., a greater CV indi-
cated a lower precision). The fraction of the 100 estimated n
values falling above or below 1.0 was determined for each
specified n value used for the simulations. This fraction indi-
cates the frequency of correctly identifying n values as greater
or less than 1.0, and therefore the statistical significance of the
specified n value.

Simulation and Data Analysis

Simulation of data sets and nonlinear estimation of phar-
macodynamic parameters were performed using SAS (SAS
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Fig. 1. Comparison of experimental and simulated data. (A) The coeffi-
cient of variation of E as a function of E is shown for the experimental
data. Each data point represents a CV of E for 6 replicates for each
experiment. Data for 4 experiments are shown. The middle line is the
least squares linear regression line for the middle level of variability,
i€,y =21.7% — 0.18 E (r* = 0.56, p < 0.0001). The top and bottom
lines are the upper and lower limits of the 95% prediction interval of
the data points (intercepts of 32.8% and 10.6%, respectively). (B)
Variability simulated using the middle level of intraday variability of
the experimental data. The least squares linear regression line for the
middle level of variability is y = 20.9% — 0.017 E (> = 0.75, p <
0.0001). The top and bottom lines are the upper and lower limits of
the 95% prediction interval of the data points (intercepts of 27.9% and
13.8%, respectively). (C) Experimental data anaiyzed by the surface
response method. Each data point represents the mean of 6 replicates
of a randomly selected experiment. The mesh surface was obtained
from nonlinear parameter estimation according to Equation 1. The
resulting parameter estimates are: E; = 102%, m = 1.18, h = 6.52,
n = 1.04. (D) Simulated data of a randomly selected experiment,
analyzed by the surface response method. The resulting parameter
estimates are: E, = 99%, m = 1.01, h = 642, n = {.12.

Institute, Inc., Cary, NC) on a pentium-based personal computer.
Marquardt’s method was used for all nonlinear estimations of
parameters. Statistical analysis of the differences between the
specified n values and the estimated n values was performed
using the two-tailed Student t test.

RESULTS

Simulated Versus Experimental Data

The assumption used in our pharmacodynamic analysis
method was that the 100 data sets generated by the Monte Carlo
simulations contained random variabilities that were compara-
ble to the variabilities observed in the experimental data. This
assumption was validated by the results shown in Fig. 1A and
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1B and Table 1. The variability of the simulated data was,
similar to that in the experimental data, linearly and inversely
correlated with the effect level. These results also show that
for the middle level of variability, the slope and intercept of
the least squares regression line of the CV vs E plot for the
simulated data was nearly identical to those for the experimen-
tal data.

Figure lc shows the analysis of the experimentally deter-
mined pharmacodynamic data by the 3-dimensional surface
response method, and Fig. 1D shows the analysis of the simu-
lated pharmacodynamic data. The simulated results are compa-
rable to the experimental data, as indicated by the similar curve
shape and the similar pharmacodynamic parameters including
Eg, m, h and n.

Accuracy and Precision of Estimated n Values

Figure 2 shows the accuracy and precision of the estimated
n values, as a function of the numerical value of n and as a
function of the variability in the effect data. For all of the
63 permutations (i.e., 21 n values and 3 levels of effect data
variability), the differences between the specified n values and
the average of 100 estimated n values were <1.2%. At the low,
middle and high levels of data variability, the average estimated
n values deviated from the specified n values by 0.03%, 0.1%,
and 0.9%, respectively. Hence, the accuracy was >99%. The
precision decreased with increasing level of variability in the
simulated effect data; the average CV were 0.3, 2.4, and 5.0%
for the low, middle, and high levels of variability, respectively.
An interesting observation is that the precision decreased with
increasing n value. For example, at the high level of variability,
the CV at an n value of 1.4 was nearly twice the CV at an n
value of 0.6. Because the n value reflects the convexity of the
relationship between ICsq and the treatment duration, the lower
precision at the higher n values is probably due to the greater
variability in data fitting associated with a greater convexity.

Statistical Significance of Estimated n Values

Figure 3 shows the plot of (frequency of obtaining an
estimated n value of either greater or less than 1.0 from the
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Fig. 2. Accuracy and precision of estimated n values as a function of
numerical values of n and as a function of variability in effect data.
Data were simulated using 21 specified n values ranging from 0.6 to
1.4, h = 6.55, m = 1.02 and the three different levels of intraday
variability corresponding to the three lines in Figure 2A and calculated
by Equation 5. The simulated data were analyzed by Equation 1 to
yield the estimated n values. Each data point represents the mean of
100 n values estimated from 100 simulated data sets. Mean *£ SD.
The lines connect the data points and are not regressed lines. Regression
analysis showed positive correlations at all three levels of variability
(> 0.999, p < 0.0001).
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Fig. 3. Frequency of correctly identifying n estimates that deviate
from 1.0. The specified n values were used to generate the simulated
data sets from which the estimated n values were obtained. The fre-
quency of the estimated n values to fall below or above 1.0 was
determined for each specified n value, and for each of the three levels
of effect data variability, i.e. low (@), middle (ll), and high (A). The
lines connect the data points.

simulated data) vs (specified n values used to generate the
simulated data), as a function of the specified n values and the
effect data variability. The results indicate that the frequency
for correctly tdentifying n values of greater or less than 1.0
increased with the difference between the n estimate and 1.0,
and decreased with increasing variability in the effect data.
For example, at the middle level of effect data variability, the
frequency increased from 54% at the n value of 1.00 to 100%
at the n value of 1.04. At the low, middle and high levels of
variability, the specified n values needed to correctly identify
estimated n values of greater than 1.0 at a >95% frequency
(i.e. p < 0.05) were 1.01, 1.03, and 1.10, respectively.

Accuracy and Precision of Other Parameters

The parameters E;, m, and h were estimated for each
simulated data set. These parameters showed accuracy and
precision of a similar magnitude as n. All accuracies were
>99%. The CV for E; and m were <2% and <7%, and indepen-
dent of the n value. The CV for h was about 50% larger than
that of n, and increased in parallel with the CV of n.

DISCUSSION

The present study used Monte Carlo simulations, together
with the variability in the drug effect data, to determine the
variability in n which is a calculated parameter. We have shown
that analysis of pharmacodynamic data can provide a quantita-
tive measurement of the pharmacodynamic exponent n, which
in turn indicates the relative importance of drug concentration
and treatment time on drug effect (3,4). The present study
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demonstrated that the accuracy, precision and statistical signifi-
cance of the n estimates depend on the numerical value of the
n estimates and the variability in the effect data, and on the
quantitative relationships between these parameters.

The inherent limitation of our approach is that the conclu-
sions depend on the Monte Carlo simulations depend on the
correctness of the pharmacodynamic model depicted in Equa-
tion 1. There are alternative approaches which do not require
simulations but rather depend on resampling of the observed
experimental data to identify the variability of the derived
parameters. An example is the bootstrapping method (5). How-
ever, these methods are limited in that the resampling is per-
formed on existing data, cannot be used to establish the
variability of other systems where there are no experimental
data, and are therefore inadequate for the purpose of the pres-
ent study.

In conclusion, results of the present study show that within
the usual data variability (i.e. CV of up to ~20% for 6 repli-
cates), the n value can be obtained by the surface response
method with >99% accuracy and >95% precision and an n
value of 1.03 is significantly different from 1.0. We recommend
performing multiple experiments to identify the highest intraday
variability, as a conservative measurement. We also recommend
using the high level of variability because our results indicate
that this variability yielded simulated data that are comparable
to the experimental data (Table 1), and because it gives the
most conservative results on the accuracy and precision of the
estimated n values.
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